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Abstract. Evolution equations for multiplicities in QCD cascades can, both in the parton and dipole
picture, be used to estimate corrections beyond the formal accuracy of the modified leading log approx-
imation (MLLA). The differences between the two pictures, and other uncertainties beyond first order
MLLA corrections, are here investigated in some detail. For example, I discuss how some colour sup-
pressed corrections, which cannot be determined without better knowledge of non-perturbative QCD, are
related to the question of colour reconnection. A generalized evolution equation for the dipole cascade is
also presented.

1 Introduction

The modified leading log approximation (MLLA) [1,2]
of QCD cascades systematically includes corrections sup-
pressed by a relative factor

√
αs, where αs is the coupling

of the strong interaction. Confronting MLLA predictions
with data on multiplicities in quark and gluon jets,Nq and
Ng, higher order corrections are found to be important [3,
4]. These corrections, in particular energy conservation ef-
fects, have been estimated by expanding the MLLA evo-
lution equations beyond their order of formal reliability
[5–7]. Thus, no exact and systematic inclusion of O(αs)
effects is available.
One contributor to O(αs) corrections is the class of

Feynman diagrams where the gluons are not strongly or-
dered, i.e. where two gluons have similar transverse mo-
mentum, or where the hardest gluon has a transverse mo-
mentum close to the kinematical limit. The iterative cas-
cade formalism is not designed to include such diagrams
in a proper way, and thus “moderately ordered” gluons in-
troduce uncertainties to the O(αs) corrections, which may
have numerical consequences.
The iterative cascade is a branching process, where

each emitter can split into two new ones, which continue
to emit independently. However, colour suppressed terms,
which reflect possible interferences between colour charges
due to the finite number of colours, do not fit naturally
into this iterative picture. According to [7], approximately
10% of the important energy conservation corrections to
Ng/Nq are related to these uncertain effects, which cannot
be fully determined within the perturbative QCD cascade
formalism. In this paper I discuss their connections to the
question of colour reconnection [8,9].
A simple way to investigate the uncertainties in the

estimates of higher order corrections is to compare two al-
a e-mail: eden@nordita.dk

ternative evolution equations, based on the parton cascade
[2] and dipole cascade [10], respectively. These are both
equivalent within the MLLA accuracy, and their differ-
ences are a guide to the uncertainties at higher orders. In
this paper, I compare the theoretical results in the dipole
and parton pictures more directly than has been done be-
fore, by expanding the dipole evolution equations in

√
αs,

in the same way as has been done for the parton cascade.
I also present new dipole evolution equations, alterna-

tive to the ones in [10]. The new derivation is less transpar-
ent and the result is mathematically more involved but, in
spite of such shortcomings, it is presented for two reasons:
First, discussing the differences between the two alterna-
tive dipole evolution equations is a powerful way to exam-
ine the uncertainties beyond first order MLLA corrections.
Second, the recoil corrections, presented in [7] for average
multiplicities only, are here treated in a more general way,
suitable for calculations of all multiplicity moments.
The outline of this paper is as follows: In Sect. 2, I

present the investigated evolution equations. In Sect. 3,
their predictions on some multiplicity quantities are com-
pared. The differences and other uncertainties at higher
order corrections are discussed in Sect. 4. In Sect. 5 a re-
lation to colour reconnection is discussed. The paper ends
with a summary in Sect. 6.

2 Evolution equations

In this section, I list three alternative evolution equations
for the multiplicity distribution in QCD cascades. Though
this paper focuses on average multiplicities, I will when
possible give the evolution equations for the more general
generating functions. The generating function to a distri-
bution, P (λ), of some quantity λ, is defined as

P(z) ≡
∫
dλP (λ)(1 + z)λ. (1)
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While the distribution for two indepently contributing
sources is described by a convolution, the corresponding
generating function is simply multiplicative,

Pa+b(λ) =
∫
dλ1dλ2Pa(λ1)Pb(λ2)δ(λ− λ1 − λ2)⇒

Pa+b(z) = Pa(z)Pb(z). (2)

(In case of a discrete variable, e.g. multiplicity, the inte-
grals are replaced by sums, and the δ distribution by a
Kronecker δ.) Expanding P in powers of z gives different
moments of the multiplicity distribution, and thus knowl-
edge of P gives full knowledge of the distributions.

2.1 Parton equation

The evolution equations for generating functions for the
multiplicity distributions are in the parton cascade picture
[2] given by

P ′
G(l) =

∫
dxKG

G (x)2ᾱ[PG(l + ln(x))PG(l + ln(1− x))

−PG(l)] +
nf

2Nc

∫
dxKF

G(x)2ᾱ

×[PF (l + ln(x))PF (l + ln(1− x))− PG(l)], (3a)

P ′
F (l) =

CF

Nc

∫
dxKG

F (x)2ᾱ[PG(l + ln(x))

×PF (l + ln(1− x))− PF (l)]. (3b)

Here PF represents a quark jet and PG a gluon jet. x is
the momentum fraction of the emitted gluon (or quark,
in case of g→qq splitting), nf is the number of active
quark flavours, Nc = 3 is the number of colours and
CF = (Nc/2)(1 − N−2

c ) = 4/3. The dependence on the
auxiliary variable z is suppressed in the notation, and as
kinematical variable is used l = ln(Q/Λ), where Q is the
virtuality of the jet and Λ is the scale parameter of the
perturbative cascade. The running coupling, depending on
the transverse momentum k⊥, is written as

ᾱ =
Ncαs

2π
=
2Nc

β0κ

(
1− 2β1 ln(κ)

β2
0κ

)
+O(κ−3), (4)

where
κ = ln(k2

⊥/Λ
2), (5)

β0 ≡ 1
3
(11Nc − 2nf) , β1 ≡ 1

3
(
17N2

c − nf(5Nc + 3CF)
)
.

(6)
The splitting kernels K can be written

KG
F (x) =

1 + (1− x)2
x

,

KG
G (x) =

1 + (1− x)3
x

,

KF
G(x) = x

2 + (1− x)2. (7)

KG
G must be chosen so that the sum

1
2
[KG

G (x) +K
G
G (1− x)] = 1− x

x
+

x

1− x + x(1− x) (8)

agrees with the Altarelli-Parisi splitting function for g→
gg. The choice made here is convenient for comparison
with the dipole formalism.

2.2 Dipole equation

In [7], the dipole evolution equations presented in [10] are
supplemented with recoil corrections. Only the average
effect of recoils is considered, and it is therefore preferable
to use the equations for the average multiplicity only, and
not higher moments. The result is

N ′′
g (L) = ᾱ(L− cg)

[
1− c(g)r ᾱ(L− cg)

]
Ng(L− cg)

+
nf

3Nc

d
dL

{ᾱ(L)[2Nq(L− cp)−Ng(L)]}, (9a)

N ′′
q (L) =

CF

Nc
ᾱ(L− cq)

[
1− c(q)

r ᾱ(L− cq)
]

×Ng(L− cq). (9b)

Here Ng(Nq) is the mean multiplicity of a gluon(quark)
jet, defined as one hemisphere of a gg (qq) system stem-
ming from a point source, with invariant mass

√
s. This

scale is represented by the logarithmic variable

L = ln(s/Λ2). (10)

The number cg(cq) represents corrections related to the
non-singular part of the gluon emission kernel KG

G (K
G
F ),

in the following referred to as “kernel corrections”. The
number c(g)r (c(q)

r ) is related to recoil effects in a gg(qq)
dipole, while cp reflects energy conservation in pair pro-
duction g→qq. The values are

cg =
11
6
, cq =

3
2
, cp =

13
6
, (11)

c(g)r = 2
(
π2

6
− 49
72

)
, c(q)

r = − 2
N2

c

(
π2

6
− 5
8

)
. (12)

2.3 Generalized dipole equation

In appendix, I derive dipole evolution equations alterna-
tive to (9). The recoil corrections are here treated in a
way suitable for calculations of all multiplicity moments.
I therefore refer to these formulas as the generalized dipole
evolution equations. The equations are

[ln(Pg(L+ cg))]′

= B(L) + ᾱ(L)Pg(L+ cg) exp(−cgB(L))
∑
n=1

R(g)
n Bn(L)

+
nf ᾱ(L)
3Nc

[Pq(L+ cq)
Pg(L+cg)

exp
[(
cg− 2CF

Nc
cq

)
B(L)

]
×
∑
n=0

R(p)
n Bn(L)−1

]
, (13a)

[ln(Pq(L+ cq))]′
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=
2CF

Nc

[
B(L) + ᾱ(L)Pg(L+ cg) exp(−cgB(L))

∑
n=1

R(q)
n Bn(L)

]
, (13b)

B′(L) = ᾱ(L)[Pg(L+ cg) exp(−cgB(L))− 1]. (13c)

The numbers R(i)
n , defined in (42), (48) and (51), re-

flect energy conservation. In particular, we have c(i)r =
−R(i)

1 .
To interprete B, we note that neglecting pair produc-

tion g →qq, kernel corrections (setting cg = cq = 0) and
recoil effects (setting R(i)

n = 0) gives the simple relation
B = (lnPg)′. Thus, B represents the leading order esti-
mate of the change of multiplicity with scale. In this paper,
B will just be treated as an auxiliary generating function,
whose moments can be eliminated, replaced by moments
of the physically more relevant functions Pg and Pq, which
represent the multiplicity in a gg and qq dipole, respec-
tively. Note that a gg system consists of two gg dipoles,
one from each triplet charge to the matching anti-triplet
charge of the other gluon.

3 Comparison

Both the parton and dipole pictures have been used to
predict multiplicity observables. In [5] the generating func-
tions of (3) are expanded P(l+ ε) = P(l)+ εP ′(l)+ ..., to
get parton cascade evolution equations expanded in

√
ᾱ.

In [7], the dipole evolution equations, (9), are combined
to

N ′
g(L+ cg − cq) = Nc

CF
[1− (c(g)r − c(q)

r )ᾱ(L)]N ′
q(L). (14)

Using the experimentally well determined Nq as input,
and a boundary condition scale L0 where Nq(L0) =
Ng(L0), this equation is used to predict Ng for scales
L > L0. These parton and dipole approaches are con-
fronted with data in [4].
In this section, all evolution equations are expanded in√
ᾱ in the same way, thus enabling a more direct compari-

son of the cascade pictures. To explore the differences, it is
enough to consider average multiplicities, with corrections
up to second order in

√
ᾱ.

With numbers ai and ri defined as in [5] from

N ′
g(L)

Ng(L)
=

√
ᾱ
(
1− 2a1

√
ᾱ− 4a2ᾱ+O(ᾱ3/2)

)
, (15)

Ng(L)
Nq(L)

= r0
(
1− 2r1

√
ᾱ− 4r2ᾱ+O(ᾱ3/2)

)
, (16)

the evolution equations for average multiplicities can be
written in the following form, covering corrections up to
second order,

Table 1. Table with second order coefficients which differ be-
tween the considered cascades. The values of the quantities are
given in the text. Their interpretation is discussed in Sect. 4.
Second order terms common to all cascades are given in (17)

parton dipole generalized dipole

4g2 4v2
1
2c2

g − c(g)
r −c(g)

r − cp
nf

2N3
c

4q2 −4v8 − 4
v10

r0

1
2c2

q − c(q)
r

1
2 (c

2
q − c2

g) − c(q)
r − cg

nf

3N3
c

N ′′
g = ᾱNg −

(
cg +

nf

3N3
c

)
(ᾱNg)′

+4
[
nf(r1 − cp

2 )
r03Nc

+ g2

]
ᾱ2Ng, (17a)

Nc

CF
N ′′

q = ᾱNg − cq(ᾱNg)′ + 4q2ᾱ2Ng. (17b)

The different cascade expressions for g2 and q2 are
shown in Table 1. The coefficients v, defined in [5], reflect
recoil effects in the parton cascade. They emerge from tay-
lor expansion of the generating functions in the integrals
of (3). The values are

v2 =
∫
dx
1
2

[
KG

G (x) ln(1− x) +
(
KG

G (x)− 2
x

)
ln(x)

]
=
67
36

− π2

6
, (18)

v8 = −
∫
dx
1
2

(
KG

F (x)− 2
x

)
ln(x) = −7

8
, (19)

v10 = −
∫
dx
1
2
KG

F (x) ln(1− x) = π2

6
− 5
8
. (20)

Matching orders of
√
ᾱ in (17), we get

r0 =
Nc

CF
, 2a1 =

cg
2
+

nf

6N3
c

− β0

8Nc
,

r1 =
cg − cq
2

+
nf

6N3
c
, (21)

2a2 = −
(
a1 +

β0

8Nc

)(
a1 +

β0

4Nc

)
− nf

r03Nc

(
r1 − cp

2

)
− g2, (22)

r2 = r1
(cq
2

− a1

)
− nf

r03Nc

(
r1 − cp

2

)
− g2 + q2. (23)

The numerical impact of the equation differences to the
anomalous dimensionN ′

g/Ng and multiplicity ratioNg/Nq
is presented in Table 2 and Fig. 1. We conclude that there
is a considerable difference between the parton and dipole
pictures, also when precisely the same procedure has been
invoked to reach predictions on physical observables. The
uncertainties represented by differences in a2 and r2 are
larger than the third order corrections calculated for the
parton formalism [5].
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Fig. 1. Multiplicity ratios to different orders in
√

ᾱ. The chosen example is nf = 4 and Λ = 0.22GeV. ᾱ is given by (4). Left:
Anomalous dimension N ′

g/Ng as
√

ᾱ (solid line),
√

ᾱ(1− 2a1
√

ᾱ) (crossed) and
√

ᾱ(1− 2a1
√

ᾱ − 4a2ᾱ) for the parton equation
(dashed), dipole equation (dotted) and generalized dipole equation (dash-dotted). Right: Ng/Nq as r0 (solid line), r0(1−2r1

√
ᾱ)

(crossed), and r0(1 − 2r1
√

ᾱ − 4r2ᾱ) for the parton picture (dashed) and dipole picture (dotted)

Table 2. Numerical differences on second order corrections to
the anomalous dimension and the multiplicity ratio Ng/Nq

a2 r2

nf parton dipole gen. dip. parton dipole gen. dip.

3 −0.379 −0.240 −0.015 0.426 0.620 0.633
4 −0.339 −0.200 0.030 0.468 0.663 0.680
5 −0.300 −0.161 0.074 0.510 0.705 0.727
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(g)ln(L)
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  cq

cg
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Fig. 2. a The phase space for gluon is, to leading order, a trian-
gluar region in the y, κ plane. A gluon emitted at y1, κ1 enlarges
the phase space with a double-sided fold of height κ1. This im-
plies that the triangular phase space represents the leading
order relation N ′′

g = ᾱNg. b Illustration of some subleading
corrections: The dark strips illustrate effective phase space re-
ductions representing kernel corrections. The light-gray strips
represent the phase space for qq pair production. If g →qq,
the quark colour factor CF applies to part of the dipole phase
space. The phase space reduction due to the lower energy of
the produced quark is illustrated with the dashed strip

4 Discussion of corrections up to second order

In this section, I discuss the different terms in (17) and
Table 1, and also some not included anywhere yet. Many
corrections can be visualized with the logarithmic phase
space triangle. Following the colour flow connecting the

partons, we label the original ones 1 and 3, and the emitted
gluon 2, and let xi be the scaled energy 2Ei/

√
s of parton

i. With kinematical variables

y =
1
2
ln
(
1− x1

1− x3

)
, k2

⊥ = s(1− x1)(1− x3), (24)

the constraint 2k⊥ cosh(y) <
√
s implies

|y| ≤ ymax ≡ ln
(√

s

k⊥

)
+ ln

(
1 +

√
1− 4k2

⊥/s
2

)

≈ 1
2
(L− κ). (25)

Thus the allowed phase space for gluon emission is approx-
imately a triangular region in the y, κ-plane, cf. Fig. 2a. As
an introduction to this phase space picture, I discuss how
it illustrates leading order results and first order correc-
tions, thereafter continuing with second order corrections
of increasing uncertainty. In the following, the figure rep-
resents a gg dipole.

4.1 Simpler terms

After the emission of a gluon at y1, κ1, the additional
phase space for further emissions can be represented by a
fold of height κ1, as in Fig. 2a. The fold contributes with a
multiplicity Ng(κ1). Neglecting kernel corrections and qq
production, this implies

Ng(L) =
∫ L

dκ
∫ 1

2 (L−κ)

1
2 (κ−L)

dyᾱ(κ)Ng(κ), (26)

giving the leading order result N ′′
g = ᾱNg in (17a). Thus,

the triangular phase space in Fig. 2a illustrates the leading
order term.
In Fig. 2b, some possible corrections up to second or-

der are illustrated. Strips of finite width correspond to
integrals like (26), but with the y interval constant, re-
sulting in terms in (17) proportional to (ᾱNg)′. A finite
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area, where also the κ limits are independent of L, repre-
sent terms proportional to (ᾱNg)′′ → ᾱ2Ng.
At the left edge, the dark strip of width cg/2 illus-

trates an effective phase space reduction due to kernel
corrections, and the light-gray strip represents the phase-
space for qq pair production. To avoid drawing two strips
on top of each other, the “pair production strip” is here
drawn just inside the “cg strip”. Together, they illustrate
the first order correction −(cg + nf/3N3

c )(ᾱNg)′ in (17a).
In a qq dipole, a corresponding strip represents −cq(ᾱNg)′
in (17b).
At the right edge, the effects of g →qq is illustrated.

Below the transverse scale of the pair production, the
colour factor is reduced from Nc/2 to CF. The strips at
the edge are changed, and due to the reduced energy of
the quark, there is also a strip of width cp/2 removed.
These changes of strips illustrate first order corrections to
the pair production, which in itself is a first order cor-
rection, thus representing the second order term (r1 −
cp/2)(4nf/r03Nc)ᾱ2Ng in (17a).
The colour factor reduction need not cover precisely

the triangular fold below the g →qq splitting. The bor-
der for colour suppression may be moved a finite distance,
whose mean could be related to the average energies of
the qq pair, and thus to cp. In the generalized dipole equa-
tion, this mean is 3cp/4, giving the second order correction
−(cpnf/2N3

c )ᾱ
2Ng in Table 1.

As discussed in the introduction, the top of the trian-
gle and the surroundings of a gluon fold top are regions
where the validity of the iterative cascade formalism is
uncertain. However, second order corrections related to
“moderately ordered gluons”, emitted in these regions,
are of some numerical importance. This is e.g. observed
in [11], discussing the triangle top correction.
The cg strips of height L overshoot at the triangle top.

Re-inserting a finite area, we get a second order correction
(c2g/2)ᾱ

2Ng. Assuming the cg strips at the edge of gluon
folds to extend into the background triangle, we get sec-
ond order corrections which precisely cancel the ones at
the top of the gg dipole, while the top of a qq dipole is dif-
ferent. From the coefficient q2 in Table 1, we find that the
dipole equation includes the (c2/2)-terms at the top, but
not at a gluon fold, while the generalized dipole equation
includes both. This is the main difference between the two
equations, and we noted in Sect. 3 its numerical effect on
the anomalous dimension N ′

g/Ng.
Pair production may also be “moderately ordered” and

it is possible to have corrections represented by a V-shaped
qq production area overshooting at the top of a gg dipole,
and a compensating V-shaped area around the top of a
gluon fold. Looking for nf dependence in q2, we see that
asumptions for such qq productions differ between the
two dipole equations, but that the effects are numerically
small.
Note that the discussion here concerns possible second

order corrections. One cannot conclude that the equation
including the most should be more appropriate. The par-
ton cascade treatment of moderately ordered gluons is dis-
cussed at the end of the next subsection.

4.2 Very hard gluons

There are possible corrections related to emissions of high-
k⊥ gluons, not included in any of the evolution equations.
The corrections are not numerically insignificant, but as
the iterative cascade formalism is very uncertain for these
extreme gluons, I leave the results in Sect. 3 unchanged.
The discussion here is mainly meant to further illustrate
uncertainties beyond first order MLLA corrections.

In the dipole cascade

In order to take a closer look at high-k⊥ corrections, we
note that the emission densities off qq and gg dipoles are

dnqq =
2CF

Nc
ᾱdκdy

x2
1 + x

2
3

2
, dngg = ᾱdκdy

x3
1 + x

3
3

2
.(27)

In the limit k2
⊥ � s, the factors dy(xn

1 + x
n
3 )/2 equal

KG
F (x)dx and K

G
G (x)dx, respectively.

In the dipole evolution equations, the kernel correc-
tions are represented by constant rapidity range reduc-
tions cg and cq. For very high-k⊥ gluons, this is only ap-
proximately correct. The effective phase space differences,
whose main contributions are at high κ, have magnitude
(index t stands for “top correction”)

c
(q)
t ≡ lim

L→∞

{∫ L−ln 4

0
dκ
∫ ymax

−ymax

dy
x2

1 + x
2
3

2
− 1
2
(L− cq)2

}

= cq
(
2− cq

2

)
− ln2(2)−

∑
n=1

2
2nn2 ≈ 0.23, (28)

c
(g)
t =

1
18
+ cg(2− cg

2
)− ln2(2)−

∑
n=1

2
2nn2 ≈ 0.40. (29)

These top corrections modifies a2 and r2 by

∆a2 = −c
(g)
t

8
≈ −0.050,

∆r2 =
c
(q)
t − c(g)t

4
= − 1

24
≈ −0.042. (30)

Comparing with e.g. the differences in a2 between cascade
formalisms, shown in Table 2, we note that these top cor-
rections, if trustworthy, are not numerically negligeble.
If the only constraint on the gg dipole emission density

is to reproduce the Altarelli-Parisi splitting function in its
region of validity, the gg kernel in (27) is not unique. We
may generalize x3

1 + x
3
3 to

x3
1 + x

3
3 + x2[f(x2)− f(1− x2)] +

k2
⊥
s
g

(
k2

⊥
s
, x2

)
. (31)

This kernel is symmetric in indices 1 and 3. The factor
(k2

⊥/s)g does not affect K
G
G , provided g is regular. The

generalized kernel in (31) just adds a term f(x)−f(1−x)
toKG

G (x), which cancels against the corresponding term in
KG

G (1−x), leaving the sum in (8) unaffected. (For consis-
tency, the kernel for a mixed (qg) dipole must be modified



498 P. Edén: Multiplicities in parton and dipole QCD cascades

Nc dxKG
G(x) ln(1-x) => 4v2

a

Nc dx[KG
G(x) - x

2 ] ln(x) => 4v2
b

CF dxKF
G(x) ln(1-x) => 4v10 /r0

Nc dx[KF
G(x) - x

2 ] ln(x) => 4v8

2
1 Nc dxKG

G(x) ln(1-x) => cr 
(g)

- 2N
1 

c
 dxKF

G(x) ln(1-x) => cr 
(q)

x

x

1-x

1-x

x

x

s(1-x)

s(1-x)

parton recoil terms: dipole recoil terms:

Fig. 3. Comparing recoil terms. left: In the parton cascade, recoils on the emitting parton lead to the recoil terms 4va
2 and

4v10/r0. The energy fraction x of the emitted gluon, combined with kernel corrections, leads to the recoil terms vb
2 and v8.

right: In the dipole picture of gg → ggg, the squared mass of the “spectator diple” is reduced by a factor 1 − x. There is no
corresponding spectator dipole in case of emission from a qq pair. However, a colour suppressed term can be represented by a
dipole between the q and q, whose contribution is weighted with the negative factor −1/N2

c . This is illustrated by the dashed
line in the lower right figure

from x2
q + x

3
g to x

2
q + x

3
g + (1 − xg)[f(x2) − f(1 − x2)] +

k2
⊥

2s g(
k2

⊥
s , x2). The additional terms vanish when xg → 1,

leaving KG
F unchanged.)

To examine the numerical impact of this possible ker-
nel generelization, consider the simple case g = 0, f(x2) =
χx2, where χ is a free paramter. This modification adds
χ to the top correction c(g)t and χ/2 to the recoil coeffi-
cient c(g)r . Constraining the kernel in (31) to be positive
everywhere in phase space, not to overthrow the ansatz
of independently emitting dipoles, implies −2 < 8χ <
(35+13

√
13). With minimum χ, the change in a2 is mod-

erated from −0.050 to −0.034, and the change in r2 from
−0.042 to −0.010, but there is no a priori argument for
this minimum value to be appropriate. Instead letting χ
approach its maximum value ∼ 10, would have drastic
effects on the second order result. However, the possible
choices in (31) are constrained by data on e.g. multiplicity
distributions, which are very well described by the cascade
formalism, and four-jet characteristics in qq→qqgg, which
are best described by the QCD matrix elements, but rea-
sonably well reproduced by cascades [12]. Reversing the
discussion, the degrees of freedom in (31) could be used
to search for an improved simultaneous fit to multiplicity
and 4-jet properties.

In the parton cascade

In the parton picture, a two-parton system is described as
two independent jets, with opening angle π/2. However,
in [6] it was pointed out that this leads to an approxi-
mate treatment of very hard gluon emission, which has
numerical consequences. To improve parton cascade cal-
culations they use, for the first gluon off a qq system, the
qq emission density in (27).
A similar well defined matrix element is not avail-

able for gg → ggg. If trying to include similar corrections

in the gg case, by letting the hardest gluon be emitted
in a dipole-like manner, rather than from two indepen-
dent gluon jets, the parton formalism would inherit the
gg dipole high-k⊥ uncertainties discussed above.

4.3 Recoil terms

In the dipole picture, a gg dipole takes recoils from emis-
sions in the neighbouring dipoles, and thus the phase space
is reduced. On average, the rapidity reduction at trans-
verse momentum scale κ is c(g)r

∫ L−cg

κ
dlᾱ(l) (dashed line

at left edge of Fig. 2b). This gives the second order recoil
correction −c(g)r ᾱ2Ng in Table 1.
A more complete set of recoil terms is illustrated in

Fig. 3. There, v2 is split in two parts,

va
2 = −

∫
dx
1
2
KG

G (x) ln(1− x) = π2

6
− 49
72
, (32)

vb
2 = −

∫
dx
1
2
(KG

G (x)− 2
x
) ln(x) = −85

72
, (33)

which have a direct correspondance to the quark terms
v10/r0 and v8, respectively. vb

2 and v8 come from a combi-
nation of kernel corrections with energy conservation on
the emitted gluon, which has no correspondance in the
dipole picture.
Recoils in the parton picture, acting on an emitting

gluon, corresponds in the dipole picture to recoils on a
spectator gg dipole. Since the colour factor is Nc for glu-
ons and Nc/2 for gg dipoles, this leads to the factor two
difference between 4va

2 and c
(g)
r .

The recoil factor difference 4v10/r0 − c
(q)
r is related

to the same colour factor Nc/2 as is 4va
2 − c

(g)
r . In the

emission density off a qqg system, a colour suppressed
term can be represented by a dipole between the q and
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q, whose contribution is weighted with the negative factor
−1/N2

c . Recoils in the dipole picture act on this colour
correction dipole. However, since it can not be regarded
an independent emitter, full understanding of its effects
requires better knowledge of non-perturbative QCD, e.g.
questions related to so called colour reconnection. This is
further discussed in Sect. 5.
In the parton formalism, specific assumptions about

the effects of the negative dipole are made. Using the an-
tenna symbol (îj) to represent a dipole between partons
i and j [2], the emission density from a qqg state can be
written

dn ∝ ᾱ

[
(q̂g) + (ĝq)− 1

N2
c
(q̂q)

]
. (34)

The antenna (îj) has collinear divergences in the direc-
tions of both its partons. To arrive at a parton cascade
picture, each antenna is split in two parts, (îj) = Pij+Pji,
where Pij(Pji) has collinear divergences in the direction
of parton i(j) only, and the emission density is rewritten
in the form

dn ∝ αs

π
[CF(Pqg + Pqg) +NcPgq] + ᾱ{Pgq − Pgq}

− ᾱ

N2
c

{(q̂q)− Pqg − Pqg}. (35)

The collinear divergences cancel inside the curly brackets,
and within first order MLLA accuracy, it is appropriate
to neglect them. We note, however, that possible higher
order corrections from the second curly bracket, depending
on the negatively weighted (q̂q) antenna, cannot be fully
determined without better knowledge of non-perturbative
QCD.

5 Colour reconnection

The question of colour reconnection, where the colour
topology changes from the one defined by planar Feyn-
man diagrams, has acquired quite some attention because
of its possible effects on W mass measurements in e+e− →
W+W− [8]. One often distinguishes between “perturba-
tive” colour reconnection, occuring during the parton cas-
cade, and “non-perturbative”, occuring in the hadroniza-
tion process.
In the perturbative cascade, the dipoles, or the angu-

lar ordering constraints on partons, associates each triplet
charge with a particular anti-triplet charge. Due to the fi-
nite number of colours, this colour topology is not unique.
In principle, interferences between different topologies can
be determined, could Feynman diagrams of arbitrary or-
der be calculated.
In the hadronization process, the two most successful

phenomenological models connect triplet and anti-triplet
charges via a massless relativistic string [13] or a chain
of clusters [14]. The success of these models supports the
assumption that the hadronization process projects out
one particular colour topology. Being a non-perturbative
process, the selection of hadronization colour topology can
not be determined from first principles.

To gain more insight to the problem, an observable
in Z decays has been proposed [9]. In events with a very
hard gluon emission, due to which the quark and anti-
quark are essentially collinear, colour reconnection could
imply that the hard gluon forms a colour singlet system
with some softer gluons nearby in phase space. If so, there
need not be any colour flow connecting the qq pair and
the hard gluon. This implies a multiplicity depletion at
central rapidities along the thrust axis.
In data from Z decays [15], no effect of colour reconnec-

tion is seen. Default Monte Carlos are in excellent agree-
ment with data, while a colour reconnection model [16]
is disfavoured. However, in the considered events, a high-
k⊥ gluon is emitted, and for subsequent emissions, sqq
is small. According to the recoil picture where sqq deter-
mines the phase space for colour factor reduction, small
sqq implies that the q and q emit coherently as an octet
charge in most of the available phase space. In the per-
turbative phase, this implies that only a second gluon es-
sentially collinear with the q or q could reconnect to form
a singlet with the hard gluon in the opposite hemisphere.
After such a reconnection, there is still colour flow over
central rapidities and there is no multiplicity depletion
expected. This possible qq coherence effect is not consid-
ered in the colour reconnection models confronted with
data [9,16]. Thus, the uncertainties about recoils on the
negatively weighted dipole might dilute the discriminating
power of the suggested observable.

6 Summary

Results from parton and dipole evolution equations, ex-
panded one order beyond the formal accuracy of the mod-
ified leading log approximation, differ noticeably. This il-
lustrates the theoretical uncertainty at this order. The dif-
ference between cascade pictures is larger than the third
order correction term calculated in the parton cascade [5].
Data on Ng/Nq [3,4] seem to favour the smaller result in
the dipole cascade.
One important source of uncertainties are “moderately

ordered gluons”, i.e. two gluons with similar k⊥, or a first
hard gluon with k⊥ close to the kinematical limit. In par-
ticular, the emission density for very hard gluons off glu-
onic systems is not fully determined by the constraint on
soft gluon emission given by the Altarelli-Parisi splitting
function. This gives an opportunity to search for an emis-
sion kernel which improves the simultaneous fit to mul-
tiplicity properties (very well described by cascades) and
four-jet characteristics (better described by matrix ele-
ments).
Part of the recoil effects are truly non-perturbative,

related to negative colour suppressed terms which can not
be represented by independently emitting sources. There
are possible relations between these recoil effects and the
question of colour reconnection.
In this paper a generalized dipole evolution equation

is presented, which includes energy conservation effects
in a more general way than has been done before in the
dipole formalism [7]. This equation is suitable to calculate
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higher order corrections to all multiplicity moments, not
only average multiplicity, in the dipole cascade picture.

Acknowledgements. I thank prof. Gösta Gustafson for fruitful
discussions.

A The generalized dipole evolution equation

In this appendix, I derive a generalized dipole evolution
equation alternative to the one presented in ref [10]. Since
the dipole cascade is ordered in k⊥, I introduce a gener-
ating function P(L, κ), where L and κ are logarithms of
the dipole energy and maximum allowed k⊥, respectively.

Gluon dynamics

In gluon dynamics, based on dngg in (27), the generating
function for dipoles satisfies

P2
g (L, κ) =

∫ κ

κc

dκ′2ᾱ(κ′)S(L, κ, κ′)

×
∫ ymax

−ymax

dy
x3

1 + x
3
3

2
Pg(L12, κ

′)Pg(L23, κ
′)

×Pg(L13, κ
′) + S(L, κ, κc)P2

g (L, κc), (36)

where ymax is defined in (25), and the Sudakov form factor

S(L, κ, κ′) = exp
[
−
∫ κ

κ′
dκ′′2ᾱ(κ′′)

∫ ymax

−ymax

dy
x3

1 + x
3
3

2

]
(37)

ensures that the emitted gluon is the one with highest
k⊥. An infrared cut-off k⊥cut is introduced, with κc =
ln(k2

⊥cut). Multiplying by S
−1(L, κ, κc) and taking the

derivative w.r.t. κ leads to, with Pg ≡ Pg(L, κ), Pgij ≡
Pg(Lij , κ),

∂P2
g

∂κ
= 2ᾱ(κ)

∫ ymax

−ymax

dy
x3

1 + x
3
3

2
[Pg12Pg23Pg13 − Pg

2] .
(38)

When κ � L, the solution for ln(Pg) is linear in L.
Parametrizing the κ dependence as

ln(Pg(L, κ)) = Ag(κ) + (L− κ− cg)B(κ) (39)

inctroduces a function Ag which represents the high en-
ergy tails of the two-jet like dipole, and a term (L−κ−cg)B
which represents the central rapidity plateau. The new
functions are related through a pair of coupled evolution
equations,

A′
g − B = ᾱ exp(Ag − cgB)

∑
n=1

R(g)
n Bn, (40)

B′ = ᾱ[exp(Ag − cgB)− 1], (41)

where

R(g)
n =

1
n!

∫ 1

0

dx
x
[1 + (1− x)3] lnn(1− x)

= (−1)n
[
2ζ(n+ 1)− 1− 1

2n+1 − 1
3n+1

]
, (42)

ζ being the Riemann zeta-function.

qq systems

Gluon emission off a qq system creates a qg and a gq
dipole. In addition to these, a colour-correction term can
be represented by a dipole between q and q, whose emis-
sion density is weighted with −1/N2

c . Following the ar-
guments in [17], its only effect can be assumed to be a
reduction of the colour factor in “mixed” qg dipoles from
Nc/2 to CF, in a rapidity range Yq near the quark. For
simplicity, quark masses are here neglected.
With Pm the generating function for the multiplicity

distribution in a mixed dipole, we get evolution equations
in the form

∂Pq

∂κ
=
2CF

Nc
ᾱ(κ)

∫ ymax

−ymax

dy
x2

1 + x
2
3

2
× [Pm12(Yq)Pm23(Yq)− Pq] , (43)

∂Pm(Y )
∂κ

= ᾱ(κ)
∫ ymax

−ymax

dy
x2

1 + x
3
3

2

×
[
Pm12(Y

′)Pg23
PgR′

PgR

− Pm(Y )
]

×
[
1− 1

N2
c
Θ(Y − ymax − y)

]
. (44)

Here Y ′ represents the rapidity range of colour suppression
in the quark direction, after the gluon is emitted from a
mixed dipole. The original gluon of the mixed dipole is
assumed to be attached to a gg dipole with logarithmic
scale LR, which due to recoils is reduced to LR′ . This
equation contains a set of more or less free parameters,
but reasonable assumptions implies

ln(Pq(L, κ)) = Aq(κ) +
2CF

Nc
(L− κ− cq)B(κ),(45)

ln(Pm(L, κ, Y )) =
1
2

[
ln(Pq(L, κ)) + ln(Pg(L, κ))

+
1
N2

c
(L− 2Y )B(κ)

]
. (46)

This adds to the gluon dynamics result, (40) and (41), a
quark evolution equation

Nc

2CF
Aq

′ = B + ᾱ exp(Ag − cgB)
∑
n=1

R(q)
n Bn, (47)

where R(q)
n depend on the assumtions made on Yq and Yq

in (43). In [17], two reasonable possibilities are examined.
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One is Yq + Yq = ln(s) = L, which implies that all R(q)
n

are 0. The other is Yq+Yq = ln(sqq) = L13, which implies

R(q)
n =

1
n!

(−1
N2

c

)n ∫ 1

0

dx
x
[1 + (1− x)2] lnn(1− x)

=
(
1
N2

c

)n [
2ζ(n+ 1)− 1− 1

2n+1

]
. (48)

There are some indications from experimental data in
favour of this second choice [4] and we will limit ourselves
to this in the present paper.

Pair production

To include g→qq splittings, (still neglecting quark masses)
we add a pair production term

nf ᾱ(κ)
2Nc

∫ 1

2k⊥/
√

s

dx2(x2
2 + x

2
3)[Pm12(Yq)Pm13(Yq)− Pg

2]

(49)
to the gluon evolution equation, (38), and a similar term to
the evolution equation for a mixed dipole, (44). With rea-
sonable assumptions about recoil effects when the gluon in
a mixed dipole splits into a qq pair, the only modification
induced by gluon splittings is an additional term

nf

3Nc
ᾱ

[
exp

(
Aq − Ag −

[
2CF

Nc
cq − cg

]
B
)∑

n=0

BnR(p)
n − 1

]
(50)

on the right-hand side of (40). Except for R(p)
0 = 1, R(p)

n

depend on the assumed magnitude of the colour reduction
phase space Yq + Yq near the new qq pair. The intuitive
assumption Yq + Yq = ln(sqq) = L23 implies

R(p)
n =

3
2n!

∫ 1

0
dx(x2 + (1− x)2)

×
[
(1 +

1
N2

c
) ln(x) + ln(1− x)

]n

. (51)

Combined result

Neglecting possible corrections related to emissions with
k⊥ close to the kinematical limit, discussed in Sect. 4.2,

the solutions to ln(P(L, κ)), (39) and (45), are valid also
when κ is close to L. This implies Ag(L− cg) = ln(Pg(L))
and Aq(L− cq) = ln(Pq(L)), where Pg(L) and Pq(L) rep-
resent unbiased dipoles, i.e. dipoles with only kinematical
constraints on k⊥. Thus, (40), (41), (47) and (50) combine
to (13).
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